Jika f(x)=1/x^2-1/x+1, maka f'(1/2)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Turunan   ›  

Jika \( \displaystyle f(x) = \frac{1}{x^2}-\frac{1}{x} + 1 \), maka \( \displaystyle f’ \left( \frac{1}{2} \right) = \cdots \)

  1. -20
  2. -16
  3. -12
  4. -8
  5. -4

(UMB 2008)

Pembahasan:

\begin{aligned} f(x) &= \frac{1}{x^2}-\frac{1}{x} + 1 \\[8pt] &= x^{-2}-x^{-1}+1 \\[8pt] f'(x) &= -2x^{-3}+x^{-2} \\[8pt] f' \left( \frac{1}{2} \right) &= -2\left( \frac{1}{2} \right)^{-3} + \left( \frac{1}{2} \right)^{-2} \\[8pt] &= -2 \left( 2^{-1} \right)^{-3} + \left( 2^{-1} \right)^{-2} \\[8pt] &= -2(2^3)+2^2 = -2 \cdot 8 + 4 \\[8pt] &= -16 + 4 = -12 \end{aligned}

Jawaban C.